Molecular Dynamics Simulations of Strained and Defective Carbon Nanotubes

نویسنده

  • Maria Sammalkorpi
چکیده

Carbon nanotubes are tubular molecules of pure carbon with typical diameters of 1 nm – 100 nm and lengths from 100 nm up to several cm. The nanotubes have outstanding electronical and mechanical properties which has resulted in remarkable scientific interest and in proporsals of various applications. For example, their ability to be either metals or semiconductors enables the usage of nanotubes as components of electronic devices, while excellent mechanical characteristics motivate the use of nanotubes as reinforcement agents in composite structures and in nanoelectromechanical devices. This thesis aims to contribute to the understanding of the mechanical properties of carbon nanotubes and it contains two parts. The first part concentrates on initially defect-free but strained nanotubes and on the deformations and defects induced by the strain. The employed methods are empirical and tight binding molecular dynamics simulations. As results the criteria for uniform and discontinuous buckling deformations are reported. In addition, defect formation and strain relaxation are discussed and the stability of various strained and deformed structures is assessed. The second part of the thesis evaluates defects as a means to improve the bulk mechanical properties of a nanotube sample. Defects, and irradiation as a method of inducing them, are proposed to improve mechanical load transfer between a nanotube and its surroundings. These proposals are verified by analytics and molecular dynamics simulations based on classical empirical potential. The load transfer between nanotubes is found to improve significantly in the presence of defects. This concept is extended to bundles of nanotubes where the improved tube-tube load transfer is predicted to increase shear and stiffen the bundle at moderate irradiation doses. The load transfer has great significance for reinforcement of polymer composites in which the nanotube bundles may act as reinforcement fibers. Furthermore, the mechanical degradation of individual tubes as a result of the defects is also assessed. Point defects have little effect on the axial stiffness of an individual tube but the tensile strength may decrease to a fraction of the strength for a perfect tube. Although individual tubes deteriorate in strength because of the defects, the results indicate that the overall mechanical properties of a nanotube sample can be significantly improved by imperfections

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

A molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination

In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that    a similar volume of fluid is investigated ...

متن کامل

A molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination

In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that    a similar volume of fluid is investigated ...

متن کامل

Radius Dependence of Hydrogen Storage Inside Single Walled Carbon Nanotubes in an Array

In this study, we have investigated radius dependence of hydrogen storage within armchair (n,n) single walled carbon nanotubes (SWCNT) in a square arrays. To this aim, we have employed equilibrium molecular dynamics (MD) simulation. Our simulations results reveal that radius of carbon nanotubes are an important and influent factor in hydrogen distribution inside carbon nanotubes and consequentl...

متن کامل

Nonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach

In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004